Recent Methods from Statistics and Machine Learning for Credit Scoring - Anne Kraus - Boeken - Cuvillier - 9783954047369 - 8 juli 2014
Indien omslag en titel niet overeenkomen, is de titel correct

Recent Methods from Statistics and Machine Learning for Credit Scoring

Anne Kraus

Prijs
Íkr 5.895,81

Besteld in een afgelegen magazijn

Verwachte levering 23 jun. - 2 jul.
Voeg toe aan uw iMusic-verlanglijst
Eller

Recent Methods from Statistics and Machine Learning for Credit Scoring

Credit scoring models are the basis for financial institutions like retail and consumer credit banks. The purpose of the models is to evaluate the likelihood of credit applicants defaulting in order to decide whether to grant them credit. The area under the receiver operating characteristic (ROC) curve (AUC) is one of the most commonly used measures to evaluate predictive performance in credit scoring. The aim of this thesis is to benchmark different methods for building scoring models in order to maximize the AUC. While this measure is used to evaluate the predictive accuracy of the presented algorithms, the AUC is especially introduced as direct optimization criterion.


166 pages

Media Boeken     Paperback Book   (Boek met zachte kaft en gelijmde rug)
Vrijgegeven 8 juli 2014
ISBN13 9783954047369
Uitgevers Cuvillier
Pagina's 166
Afmetingen 148 × 210 × 9 mm   ·   204 g
Taal en grammatica Engels  

Alles tonen

Meer door Anne Kraus