Bayesian Stochastic Volatility Models: Auxiliary Variable Methods for Stochastic Volatility and Other Time-varying Volatility Models - Stefanos Giakoumatos - Boeken - LAP LAMBERT Academic Publishing - 9783838386331 - 26 augustus 2010
Indien omslag en titel niet overeenkomen, is de titel correct

Bayesian Stochastic Volatility Models: Auxiliary Variable Methods for Stochastic Volatility and Other Time-varying Volatility Models

Prijs
€ 68,99

Besteld in een afgelegen magazijn

Verwachte levering 8 - 16 jan. 2026
Kerstcadeautjes kunnen tot en met 31 januari worden ingewisseld
Voeg toe aan uw iMusic-verlanglijst
of

The phenomenon of changing variance and covariance is often encountered in financial time series. As a result, during the last years researchers focused on the time-varying volatility models. These models are able to describe the main characteristics of the financial data such as the volatility clustering. In addition, the development of the Markov Chain Monte Carlo Techniques (MCMC) provides a powerful tool for the estimation of the parameters of the time-varying volatility models, in the context of Bayesian analysis. In this thesis, we adopt the Bayesian inference and we propose easy-to-apply MCMC algorithms for a variety of time-varying volatility models. We use a recent development in the context of the MCMC techniques, the Auxiliary variable sampler. This technique enables us to construct MCMC algorithms, which only consist of Gibbs steps. We propose new MCMC algorithms for many univariate and multivariate models. Furthermore, we apply the proposed MCMC algorithms to real data and compare the above models based on their predictive distribution

Media Boeken     Paperback Book   (Boek met zachte kaft en gelijmde rug)
Vrijgegeven 26 augustus 2010
ISBN13 9783838386331
Uitgevers LAP LAMBERT Academic Publishing
Pagina's 240
Afmetingen 150 × 14 × 226 mm   ·   358 g
Taal en grammatica Engels