Dr. Pei-gee Ho Dissertation: Multivariate Time Series Model Based Support Vector  Machine for Multiclass Remote Sensing Image  Classification and Region Segmentation - Pei-gee Ho - Boeken - LAP Lambert Academic Publishing - 9783838303529 - 19 juni 2009
Indien omslag en titel niet overeenkomen, is de titel correct

Dr. Pei-gee Ho Dissertation: Multivariate Time Series Model Based Support Vector Machine for Multiclass Remote Sensing Image Classification and Region Segmentation

Prijs
€ 52,49

Besteld in een afgelegen magazijn

Verwachte levering 12 - 20 jan. 2026
Kerstcadeautjes kunnen tot en met 31 januari worden ingewisseld
Voeg toe aan uw iMusic-verlanglijst
of

Satellite and airborne Remote Sensing for observing the earth surface, land monitoring and geographical information systems control are issues in world?s daily life. The source of information was primarily acquired by imaging sensors and spectroradiometer in remote sensing multi-spectral image stack format. The contextual information between pixels or pixel vectors is characterized by a time series model for image processing in the remote sensing. Due to the nature of remote sensing images such as SAR and TM which are mostly in multi-spectral image stack format, a 2-D Multivariate Vector AR (ARV) time series model with pixel vectors of multiple elements are formulated. To compute the time series ARV system parameter matrix and estimate the error covariance matrix efficiently, a new method based on modern numerical analysis is developed. As for pixel classification, the powerful Support Vector Machine (SVM) kernel based learning machine is applied. The 2-D multivariate time series model is particularly suitable to capture the rich contextual information in single and multiple images at the same time.

Media Boeken     Paperback Book   (Boek met zachte kaft en gelijmde rug)
Vrijgegeven 19 juni 2009
ISBN13 9783838303529
Uitgevers LAP Lambert Academic Publishing
Pagina's 120
Afmetingen 225 × 7 × 150 mm   ·   203 g
Taal en grammatica Duits  

Meer door Pei-gee Ho

Alles tonen