Transitivity Clustering: Clustering Biological Data by Unraveling Hidden Transitive Substructures - Tobias Wittkop - Boeken - Suedwestdeutscher Verlag fuer Hochschuls - 9783838116549 - 26 juni 2010
Indien omslag en titel niet overeenkomen, is de titel correct

Transitivity Clustering: Clustering Biological Data by Unraveling Hidden Transitive Substructures

Prijs
€ 61,49

Besteld in een afgelegen magazijn

Verwachte levering 8 - 16 jan. 2026
Kerstcadeautjes kunnen tot en met 31 januari worden ingewisseld
Voeg toe aan uw iMusic-verlanglijst
of

Clustering is a computational technique for the assignment of objects into groups of similar elements. Generally, it is widely used for business data interpretation, natural language analyses, and image processing. Typical bioinformatic applications are the detection of homologous proteins and the identification of co-expressed genes. Here, we introduce Transitivity Clustering and its accompanying software framework TransClust, a homogeneous data partitioning method based on Weighted Transitive Graph Projection. It aims for unraveling hidden transitive substructures in a given similarity graph deduced from a pairwise similarity measure. Transitivity Clustering is an efficient technique that is capable of processing hundreds of thousands of data points while still being robust against outliers and noise. A single, intuitive density parameter determines the number and the size of the clusters; with provable attributes. In addition, we present extensions of the underlying graph model in order to create hierarchies and overlaps, as well as comparisons against alternative clustering approaches and real-world application cases.

Media Boeken     Paperback Book   (Boek met zachte kaft en gelijmde rug)
Vrijgegeven 26 juni 2010
ISBN13 9783838116549
Uitgevers Suedwestdeutscher Verlag fuer Hochschuls
Pagina's 148
Afmetingen 225 × 8 × 150 mm   ·   238 g
Taal en grammatica Duits