Stochastic Weight Update in Neural Networks: Theoretical Study of Stochastic Neural  Networks Learning - Peter Sincák - Boeken - LAP LAMBERT Academic Publishing - 9783659231025 - 10 september 2012
Indien omslag en titel niet overeenkomen, is de titel correct

Stochastic Weight Update in Neural Networks: Theoretical Study of Stochastic Neural Networks Learning

Prijs
€ 43,99

Besteld in een afgelegen magazijn

Verwachte levering 8 - 16 jan. 2026
Kerstcadeautjes kunnen tot en met 31 januari worden ingewisseld
Voeg toe aan uw iMusic-verlanglijst
of

This book is focused on the modification of the Backpropagation Through Time algorithm and its implementation on the Recurrent Neural Networks. Our work is inspired and motivated by the results of the Salvetti and Wilamowski experiment focused on the introduction of stochasticity into Backpropagation algorithm on experiments with the XOR problem. The stochasticity can be embedded into different parts of the BP algorithm. We introduced and implemented different types of BP algorithm modifications, which gradually add more stochasticity to the BP algorithm. The goal of this book is to prove, that this stochastic modification is able to learn efficiently and the results are comparable to classical implementation. This stochasticity also brings a simpler implementation of the algorithm, than the classical one, which is especially useful on the Recurrent Neural Networks.

Media Boeken     Paperback Book   (Boek met zachte kaft en gelijmde rug)
Vrijgegeven 10 september 2012
ISBN13 9783659231025
Uitgevers LAP LAMBERT Academic Publishing
Pagina's 104
Afmetingen 150 × 6 × 226 mm   ·   173 g
Taal en grammatica Duits  

Meer door Peter Sincák

Alles tonen