Direct Likelihood Approximations for Generalized Linear Mixed Models: an Adaptive Approach - Basheer Ahmad - Boeken - VDM Verlag Dr. Müller - 9783639286939 - 3 september 2010
Indien omslag en titel niet overeenkomen, is de titel correct

Direct Likelihood Approximations for Generalized Linear Mixed Models: an Adaptive Approach

Basheer Ahmad

Prijs
SEK 599

Besteld in een afgelegen magazijn

Verwachte levering 26 mei - 5 jun.
Voeg toe aan uw iMusic-verlanglijst
Eller

Direct Likelihood Approximations for Generalized Linear Mixed Models: an Adaptive Approach

It is a standard approach to consider the maximum likelihood estimation procedure for the estimation of parameters in statistical modelling. The sample likelihood function has a closed form representation only if the two densities in the integrand are conjugate to each other. In case of any non- conjugate pair, no closed form representation exists. In such situations, we need to approximate the integral by making use of some numerical techniques. A first or second order Laplace approximation or the (adaptive) Gauss-Hermite quadrature method can be applied in order to get an approximative objective function. The resulting approximation of the likelihood function still needs to be numerically maximized with respect to all unknown parameters. For such a numerical maximization, all required derivatives are provided in the scope of this work. We explore the use of the (adaptive) Gauss-Hermite quadrature for Generalized Linear Mixed Models, when the conditional density of the response given the random effects is a member of the linear exponential family and the random effects are Gaussian.

Media Boeken     Paperback Book   (Boek met zachte kaft en gelijmde rug)
Vrijgegeven 3 september 2010
ISBN13 9783639286939
Uitgevers VDM Verlag Dr. Müller
Pagina's 120
Afmetingen 226 × 7 × 150 mm   ·   185 g
Taal en grammatica Engels