Information Theoretics Based Sequence Pattern Discriminant Algorithms: Applications in Bioinformatic Data Mining - Tomas Arredondo - Boeken - LAP Lambert Academic Publishing - 9783838337104 - 21 juni 2010
Indien omslag en titel niet overeenkomen, is de titel correct

Information Theoretics Based Sequence Pattern Discriminant Algorithms: Applications in Bioinformatic Data Mining 1st edition

Prijs
€ 68,99

Besteld in een afgelegen magazijn

Verwachte levering 6 - 14 jan. 2026
Kerstcadeautjes kunnen tot en met 31 januari worden ingewisseld
Voeg toe aan uw iMusic-verlanglijst
of

This work refers to studies on information-theoretic (IT) aspects of data-sequence patterns and developing discriminant algorithms that enable distinguishing the features of underlying sequence patterns having characteristic, inherent stochastical attributes. Considered in this research are specific details on information-theoretics and entropy considerations vis-á-vis sequence patterns (having stochastical attributes) such as DNA sequences of molecular biology. Applying information-theoretic concepts (essentially in Shannon?s sense), the following distinct sets of metrics are developed and applied in the algorithms developed for data-sequence pattern-discrimination applications: (i) Divergence or cross-entropy algorithms of Kullback-Leibler type and of general Czizár class; (ii) statistical distance measures; (iii) ratio-metrics; (iv) Fisher type linear-discriminant measure; (v) complexity metric based on information redundancy; and a Fuzzy logic based measure. Relevant algorithms are used to test DNA sequences of human and some bacterial organisms.

Media Boeken     Paperback Book   (Boek met zachte kaft en gelijmde rug)
Vrijgegeven 21 juni 2010
ISBN13 9783838337104
Uitgevers LAP Lambert Academic Publishing
Pagina's 264
Afmetingen 225 × 15 × 150 mm   ·   411 g
Taal en grammatica Duits