High Dimensional Clustering and Applications of Learning Methods: Non-redundant Clustering, Principal Feature Selection and Learning Methods Applied to Image- Guided Radiotherapy - Ying Cui - Boeken - LAP Lambert Academic Publishing - 9783838300801 - 23 april 2009
Indien omslag en titel niet overeenkomen, is de titel correct

High Dimensional Clustering and Applications of Learning Methods: Non-redundant Clustering, Principal Feature Selection and Learning Methods Applied to Image- Guided Radiotherapy

Prijs
€ 52,49

Besteld in een afgelegen magazijn

Verwachte levering 6 - 14 jan. 2026
Kerstcadeautjes kunnen tot en met 31 januari worden ingewisseld
Voeg toe aan uw iMusic-verlanglijst
of

This book is divided into two parts. The first part is about non-redundant clustering and feature selection for high dimensional data. The second part is on applying learning techniques to lung tumor image-guided radiotherapy. In the first part, a new clustering paradigm is investigated for exploratory data analysis: find all non-redundant clustering views of the data. Also a feature selection method is developed based on the popular transformation approach: principal component analysis (PCA). In the second part, machine learning algorithms are designed to aid lung tumor image-guided radiotherapy (IGRT). Specifically, intensive studies are preformed for gating and for directly tracking the tumor. For gating, two methods are developed: (1) an ensemble of templates where the representative templates are selected by Gaussian mixture clustering, and (2) a support vector machine (SVM) classifier with radial basis kernels. For the tracking problem, a multiple- template matching method is explored to capture the varying tumor appearance throughout the different phases of the breathing cycle.

Media Boeken     Paperback Book   (Boek met zachte kaft en gelijmde rug)
Vrijgegeven 23 april 2009
ISBN13 9783838300801
Uitgevers LAP Lambert Academic Publishing
Pagina's 160
Afmetingen 225 × 9 × 150 mm   ·   256 g
Taal en grammatica Duits  

Meer door Ying Cui

Alles tonen