Enhancing Kernel Methods for Pattern Classification: Theories and Implementations - Ke Tang - Boeken - VDM Verlag - 9783639182606 - 24 juli 2009
Indien omslag en titel niet overeenkomen, is de titel correct

Enhancing Kernel Methods for Pattern Classification: Theories and Implementations

Prijs
€ 62,99

Besteld in een afgelegen magazijn

Verwachte levering 13 - 22 jan. 2026
Kerstcadeautjes kunnen tot en met 31 januari worden ingewisseld
Voeg toe aan uw iMusic-verlanglijst
of

Kernel methods are a new family of techniques with sound theoretical grounds. They have been shown to be powerful approaches to pattern classification problems. However, many of the newly created kernel methods are far from perfect, and extensions and improvements are always required to make them even more effective. This book investigates one important class of the kernel methods, the least square support vector machines (LS-SVM), and enhances its performance extensively. In particular, the LS-SVM is enhanced in the contexts of four sub-problems related to solving the pattern classification problem. That is, model selection, feature selection, building sparse kernel classifier and kernel classifier ensemble. The LS-SVM can be regarded as a representative of many other kernel methods, and thus many ideas presented in this book can be easily extended to enhance performance of those related kernel methods. The results obtained should be useful to professionals that work on the theoretical aspects of kernel methods, or anyone else who may be considering ustilizing kernel methods for real-world pattern classification problems.

Media Boeken     Paperback Book   (Boek met zachte kaft en gelijmde rug)
Vrijgegeven 24 juli 2009
ISBN13 9783639182606
Uitgevers VDM Verlag
Pagina's 156
Afmetingen 150 × 220 × 10 mm   ·   235 g
Taal en grammatica Engels