Sensitivity Analysis of Probabilistic Graphical Models: Theoretical Results and Their Applications on Bayesian Network Modeling and Inference - Hei Chan - Boeken - VDM Verlag - 9783639136951 - 16 april 2009
Indien omslag en titel niet overeenkomen, is de titel correct

Sensitivity Analysis of Probabilistic Graphical Models: Theoretical Results and Their Applications on Bayesian Network Modeling and Inference

Prijs
€ 70,99

Besteld in een afgelegen magazijn

Verwachte levering 8 - 19 jan. 2026
Kerstcadeautjes kunnen tot en met 31 januari worden ingewisseld
Voeg toe aan uw iMusic-verlanglijst
of

Probabilistic graphical models such as Bayesian networks are widely used for large-scale data analysis in various fields such as customer data analysis and medical diagnosis, as they model probabilistic knowledge naturally and allow the use of efficient inference algorithms to draw conclusions from the model. Sensitivity analysis of probabilistic graphical models is the analysis of the relationships between the inputs (local beliefs), such as network parameters, and the outputs (global beliefs), such as values of probabilistic queries, and addresses the central research problem of how beliefs will be changed when we incorporate new information to the current model. This book provides many theoretical results, such as the assessment of global belief changes due to local belief changes, the identification of local belief changes that induce certain global belief changes, and the quantifying of belief changes in general. These results can be applied on the modeling and inference of Bayesian networks, and provide a critical tool for the researchers, developers, and users of Bayesian networks during the process of probabilistic data modeling and reasoning.

Media Boeken     Paperback Book   (Boek met zachte kaft en gelijmde rug)
Vrijgegeven 16 april 2009
ISBN13 9783639136951
Uitgevers VDM Verlag
Pagina's 164
Afmetingen 150 × 220 × 10 mm   ·   249 g
Taal en grammatica Engels